全国知识图谱与语义计算大会(CCKS2018)8月14日至17日在天津举行,凭借出色的专业能力,阿里健康团队在中文电子病历命名实体识别评测任务中夺冠。
电子病历结构化是让计算机理解病历、应用病历的基础。基于对病历的结构化,可以计算出症状、疾病、药品、检查检验等多个知识点之间的关系及其概率,构建医疗领域的知识图谱,进一步优化医生的工作。
例如,基于大医院的优质病历数据训练的辅助诊疗系统,可以在基层医院应用以提升医生的业务能力;根据症状和以往病历记录自动分析医生开出的药品是否合理,预测发生误诊的概率等等。结构化的电子病历对于临床医学科研等工作也具有重大作用,医生可以更加智能地搜索相关病历,或者查看相似病历,也可以对病历进行相关统计分析,有助于医生发现潜在的知识联系,产生高水平的临床研究论文。
此次CCKS2018的电子病历命名实体识别的评测任务,是对于给定的一组电子病历纯文本文档,识别并抽取出其中与医学临床相关的实体,并将它们归类到预先定义好的类别中。组委会针对这个评测任务,提供了600份标注好的电子病历文本,共需识别含解剖部位、独立症状、症状描述、手术和药物五类实体。
目前主流的中文实体识别方法主要沿用自英文和其他语言的通用方法,并没有把中文的特色发挥出来。而正如英文中可以根据单词的词根词缀来猜测其意义和性质一样,汉字的笔画及偏旁部首中也蕴含着大量信息。阿里健康团队以两种序列标注算法为基础,首次在医疗文本领域采用了cw2vec的方法构建词向量矩阵,基于全部的非标注文本和标注文本集训练词向量,以解决新字无法识别的问题;同时改进了汉字结构和拼音的特征的一般方案。最终,团队以严格指标0.8913取得了第一名的好成绩。
“ 医疗命名实体识别只是我们团队工作的一小部分,也是我们面向医院和医生提供医疗人工智能服务的基础。”阿里健康人工智能实验室主任范绎说,阿里健康团队长期专注通过实体识别、实体链接、关系提取等手段从电子病历中识别信息,并在此基础上对信息进行融合和整合,以知识图谱的呈现形式,为其他服务提供数据基础。在此之上,基于电子病历数据,阿里健康打造了大数据科研平台、临床辅助决策引擎等针对医院和医生的多款产品,为广大医生和用户提供更加智能的用户体验,帮助其提升专业水平和工作效率。
CCKS是由中国中文信息学会语言与知识计算专业委员会(CIPS)定期举办的全国年度学术会议,致力于促进中国语言与知识计算领域的学术研究和产业发展,为从事相关领域理论和应用研究的学者、机构和企业提供广泛交流的平台,已经成为国内知识图谱、语义技术、语言理解和知识计算等领域的核心会议。
文章来源于网络,如有侵权请联系删除。
百度爱采购如何发布采购信息
登录百度爱采购,可以点击【全网询价】来发布采购信息。如下图展示【全网询价】按钮的4个展现位置,点击其中任意一处即可发布采购信息;
百度爱采购如何更好的搜索商品
在搜索结果页面上方,我们提供了多种筛选条件,比如“品牌”、“类型”、“城市”等,使用筛选条件,可以帮您进一步提高搜索的精确度。 如果您暂时没有找到合适的卖家,建议您可以在全网询盘发布采购信息,让卖家主动来联系您!
百度爱采购官方简介
爱采购是百度旗下的企业一站式采销平台,旨在帮助用户一站直达全网商品信息,触达优质商家,通过安全便捷的交易能力全网采购。
百度爱采购介绍
帮助用户直达商品信息和优质商家,为买家提供搜索商品,搜索厂家,全网询价,指定商家询价,查看报价、在线交易等功能,全方位服务买家。同时为卖家提供了匹配询价单信息,和商家运营后台,帮助卖家快速达成交易。